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Abstract— Numerical simulations using supercomputers are producing an increasingly larger volume of data to be visualized. In this
context, Catalyst is a prototype In-Situ visualization library developed by Kitware to help reduce the data post-treatment overhead.
On the other side, Code Saturne is a Computational Fluid Dynamics code used at Eléctricité de France (EDF), one of the biggest
electricity producers in Europe, for its large scale numerical simulations. In this article we present a study case where Catalyst is
integrated into Code Saturne. We evaluate the feasibility and performance of this integration by running two test cases in one of our
corporate supercomputers.

Index Terms—In-Situ Visualization, Code Saturne, Computational Fluid Dynamics, Large-Scale Scientific Simulations Visualization

1 INTRODUCTION

Computational Fluid Dynamics (CFD) is a fundamental step for the
study and optimization of electricity production. Indeed, current
power plants use water as a mean of convective heat transfer. Conse-
quently, the simulation and visualization of fluid dynamics phenomena
is of great importance for the energy industry. Electricité de France
(EDF), being one of the biggest electricity producer in Europe, has
developed for the past 15 years an open source CFD code named
Code Saturne, allowing for the solution of very large models [14].
EDF has several supercomputers that regularly run this code in order
to perform analysis involving large amounts of data. In this context,
the visualization of data becomes a critical point.

In the past, studies and improvements in scientific simulation have
been mainly focused on the solver, due to being the most cycle-
consuming part in the simulation process. Thus, visualization has been
traditionally run sequentially on a smaller computer and at the very end
of the solver computation. At the time, this was easily explained by
the small need for both memory and computation resources in most of
the visualization cases. Nevertheless, with the increase of our compu-
tational capabilities, we tend to use and generate much more data than
what we were used to. Thus, as the scale of CFD simulation problems
is getting wider, specific issues are emerging related to input/output
efficiency. In particular, data generated during the solver computation
and used for the visualization are the source of a worrisome overhead.
Even worse, some researchers are starting to spend more time for writ-
ing and reading data than for running solvers and visualizations [12].
This new trend is asking us to design new I/O strategies and consider
visualization as a part of our high-performance simulation systems.

Most fluid dynamic engineers at EDF R&D are currently visualiz-
ing lower temporal and spatial resolution versions of their simulations
in order to avoid I/O issues when large quantities of data are involved.
We decided to addres the subject of coprocessing and in-situ visual-
ization which has been proved to be an effective solution against the
current limitations of this problem [6], [13]. Our aim is to provide our
engineers with an operational research-oriented tool in a mid-term ba-
sis. For this, we choose to evaluate Catalyst as an industrial tool for
performing In-Situ visualization. Catalyst, developed by Kitware, is
a library for Paraview that implements the coprocessing, by defining
the visualization process through Paraview and exploiting the VTK’s
parallel algorithms for the processing of the simulation data [9].
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In this article, we propose a study upon the effectiveness and scal-
ability of a prototype implementation of the coprocessing in an indus-
trial case based on the coupling of Code Saturne with Catalyst. In
section 2 we discuss works related to recent visualization in-situ sys-
tems. We will then introduce in section 3 Code Saturne, the CFD
code developed at EDF R&D. In section 4 we present our integration
of Catalyst into Code Saturne and how it is used by the users in the
framework of fluid dynamic simulations. Section 5 describes our use
case and presents results on one of our corporate clusters. Finally, sec-
tion 6 presents our analysis of the results and describes our on-going
and future work.

2 RELATED WORK

The size of generated data has become an important subject in high
performance computing, due to the need of a better input/output ef-
ficiency in our computing system. To answer this problem, several
visualization systems has been created. We can distinguish two main
approaches in recent solutions. The first one is to integrate a specific
in-situ visualization directly to our simulation code. Such an approach
proved to be an efficient way to provide coprocessing for a given sim-
ulation plus visualization system as it is the case in the hurricane pre-
diction [7] and earthquake [13] simulation systems. This method has
been proved to lead to good performances but is limited to a specific
implementation. Thus it does not respond to our needs.

The second approach is to provide a general postprocessing frame-
work letting the simulation and the visualization code communicate
together. EPSN which is a general coupling system, allows for the
connection of M simulation nodes to N visualization nodes through a
network [8]. This solution is a loosely coupled approach, requiring
separate resources and data transfer through the network. This ap-
proach presents the advantage of not overloading the nodes used for
computation. Thus the visualization code does not interfere with the
execution of the simulation. Based on the same approach, a ParaView
plugin named ICARUS [3] exists. It differs from EPSN in design by
lower requirements as it only needs the use of a single HDF5 library
and file driver extension. Such solutions offer tools for researchers
to interact with their simulations by allowing them, first to monitor
their current states but also to modify some parameters of the remain-
ing simulation steps. Those computational steering solutions as well
as the RealityGrid project [4] focus on interactivity with simulation
whereas our main objective is to provide in-situ visualization opera-
tions to researchers while minimizing input/output overhead and disk
space use.

Both built upon the well known parallel visualization algorithms li-
brary VTK, VisIt [5] and ParaView [10] provide through libsim [15]
and Catalyst [9] the possibility to coprocess simulation data. Those
in-situ solutions are tightly coupled and while they limit potential in-
teractions with the running simulation, they also highly reduce the



need of network data transfer. Thus, it contributes at circumventing
the inefficiency of high performance computing input/output systems.
Those solutions takes their benefits from directly accessing the sim-
ulation memory to perform visualization treatments by simply asking
a pointer to the available data. One major drawback of this approach
is the necessity to provide an understandable data layout to those li-
braries. Moreover, as this type of solution often gains from computing
pre-determined visualization tasks, it is not suited for results explo-
ration. As building a steering solution for Code Saturne is out of the
scope of this case study, we do not consider these drawbacks as a lim-
itation.

After evaluating the performances offered by Kitware [9], we
choose Catalyst as our coprocessing library for our case study as it
answers our visualization needs while focusing on the reduce of data
amount use. Ultimately, Kitware is still actively developing Catalyst,
and we are optimistic that more services allowing the interactions with
the running simulation will soon be available.

3 CODE SATURNE: A COMPUTATIONAL FLUID DYNAMICS

CODE

Code Saturne is an open source computational fluid dynamics soft-
ware designed to solve the Navier-Stokes equations in the cases of
2D, 2D axisymmetric or 3D flows. Its main module is designed for
the simulation of flows which may be steady or unsteady, laminar or
turbulent, incompressible or potentially dilatable, isothermal or not.
Scalars and turbulent fluctuations of scalars can be taken into account.
The code includes specific modules, referred to as “specific physics”,
for the treatment of lagrangian particle tracking, semi-transparent ra-
diative transfer, gas combustion, pulverised coal combustion, elec-
tricity effects (Joule effect and electric arcs) and compressible flows.
Code Saturne relies on a finite volume discretisation and allows the
use of various mesh types which may be hybrid (containing several
kinds of elements) and may have structural non-conformities (hanging
nodes).The parallelization is based on standard spatial decomposition
with ghost cells that facilitate data passing between adjacent cells ly-
ing across the boundaries of disconnected decomposed parts using the
Message Passing Interface. More technical details are presented in [1]
and [2].

4 USING CATALYST

Catalyst is the general purpose coprocessing library of ParaView. This
means that it was designed to work with any simulation code. This
behavior is possible thanks to the use of an adaptor-based architec-
ture. The adaptor binds the simulation code and Catalyst; it can ac-
cess both the functions of the simulation code and the general-purpose
API of Catalyst. As Catalyst itself is independent of the simulation
code it is only the adaptor that should be implemented by the design-
ers of the solver. In our case, we have developed a specific adaptor
for Code Saturne. Further explanations on the Catalyst design can be
found in [9]. All our tests were run on “ParaView 3.98.0 enhanced”
and “ParaView 3.98.1”.

4.1 Implementing the adaptor

We identified two main issues to implement our adaptor, the memory
management and the handling of ghost cell informations.

4.1.1 Memory management

In order to coprocess the simulation data, Catalyst must be provided
with the data formatted to the VTK data object structure. To accom-
plish this, several solutions are possible, essentially depending on the
format used for the data of the simulation code. In the case when the
format of the simulation code is similar to VTK and, moreover, the
simulation data can be shared at any time, then it is possible to feed
Catalyst with a direct pointer to the simulation memory. Another op-
tion is to fully or partially copy the data from the simulation into a
VTK object, and to send this object to Catalyst.

As we provide users of Code Saturne with several output formats
and as our data structure in the simulation differs from the VTK data

object structure, feeding Catalyst with a direct pointer to the simula-
tion memory is not possible. Thus, we chose to copy data from the
simulation into a VTK data object. In fact, we are allocating vtkDou-
bleArray to store our data for Catalyst. Furthermore, we provide a
pointer of those vtkDoubleArray to Code Saturne so it can transform
its simulation data and then fill the VTK data object.

The memory cost increase of our solution can be alleviated by using
more machines. The cpu cost of the copy is in a range similar to the
one needed when adapting simulation data to a specific output format.
This cost is largely affordable comparatively to the time to write data
to disk when storing time step specific outputs.

We are currently working on the evolution of our solution. Indeed
Kitware plans to add specific in-situ data structures to VTK. This will
offer adaptor developers facilities to make VTK access non VTK com-
patible simulation data.

4.1.2 Handling ghost cells: the vtkDistributedDataFilter

Handling ghost cell informations is also an important issue for us. In-
deed, several Code Saturne features and visualization filters in Par-
aView rely on the use of ghost data. Thus allowing the Code Saturne
and ParaView users to access this feature is an important objective in
our industrial environment.

To address this need, we first tried to rely on the setting of nodes
GlobalIds in order to see if ghost data exchanges between neighbors
were already handled by Catalyst. Indeed ParaView implements a
global numbering strategy on its nodes by using the so-called “Glob-
alIds”. While the setting of these GlobalIds is relevant for the handling
of ghost cell informations in ParaView, Catalyst does not actually use
them. As we want Code Saturne users to be able to use the larger scale
of both simulation and visualization algorithms, we decided to force
the application of the vtkDistributedDataFilter (D3) filter in the visu-
alization pipeline. This D3 filter originally performs a redistribution
of the data among the MPI processes but we use it to manage the ghost
cells.

4.2 Pipeline Configuration Tools

From the point of view of an engineer performing a fluid mechan-
ics simulation using Code Saturne, the workflow of a coprocessing-
simulation is: 1) to define a ParaView pipeline describing what the
user wants to study and 2) to run the simulation. As users are already
familiar with how to perform fluid mechanics simulations, defining
the pipeline for the coprocessing will be their main issue. Thus this
new process should be done in an efficient and easy way, at least this
part should not become a cumbersome bottleneck. In our industrial
environment this point is of great importance.

The definition of a Catalyst pipeline is possible in two ways. First,
the pipeline can be defined programatically, a solution that we evaluate
as too complicated and time consuming for the end user, especially
when setting camera parameters is needed. Secondly, the pipeline can
be created using the ParaView user’s interface. This second solution is
much easier for the user as he/she can simply interact with ParaView in
the same way he/she used to when visualizing the results a posteriori.
This last solution is the one we opted for and it can be performed after
activating the coprocessing plugin in ParaView.

However, the chosen strategy for defining the pipeline implies a po-
tential important bottleneck that we want to discuss in detail. Indeed,
how can we a priori define a pipeline on the large geometry and fields
that are going to be used in the simulation ? This is by itself a challenge
and could imply a dedicated parallel system only to define the pipeline.
Our solution consists in using a simplified or under-sampled version
of the large geometry to define the pipeline. In fact, this strategy is
possible in ParaView but some characteristics of the initial geometry
must be present in its simplified version (principally equal names of
fields).

Finally, the workflow of our engineers implies several steps to de-
fine the pipeline. First of all, the users possess a CAD (Computer
Aided Design) version of the geometry that is parametrized. This
parametric representation can generate meshes at different resolution



Fig. 1: Original geometry for our use case. The thickness is defined
by layout and can be set to increase the complexity of the simulation.
Here the number of layout is set to 8. In our test, the number of layout
is set to 128.

factors. In our case, this is performed inside the open-source SA-
LOME [11] platform for numerical simulation.

We generate two different meshes, one at high resolution (up to
204M hexahedrals in the use cases of this article) that will be used
for the CFD simulation and one with a lower resolution to define the
pipeline (700 000 hexahedrals in our use cases). The lowest resolu-
tion mesh is fed into Code Saturne to perform a short simulation. This
allows ParaView to obtain a representation containing not only the ge-
ometry but also the result fields. This is the data that is actually used
to define the pipeline.

5 RESULTS

5.1 Required User Interactions for Coprocessing

Before presenting our results we briefly describe how the user interac-
tions was performed. The following steps were necessary in order to
use the developed coprocessing technology:

1) The user generates a “light version” of the mesh. This step
has already been discussed in section 4.2. Indeed, the user possess
a CAD (Computer Aided Design) version of the geometry that is
parametrized, it is then possible to obtain meshes at different spatial
resolutions. A “light mesh” of small size in memory and representa-
tive of the CAD geometry is obtained. Figure 1 represents the “light
version” of the mesh used in our experiments.

2) We run a short simulation (normally just a few seconds on a local
machine) on the “light mesh”. This obtains the informations about the
result fields we need to create a visualisation pipeline in ParaView (e.g.
temperature, pressure, velocity). We could then say that we obtain an
“augmented light mesh”.

3) The mesh and the fields obtained at the end of step 2 are read in
ParaView and the user can define her/his visualisation pipeline. At the
end of this step a simple click in the ParaView interface will create a
Python file that programmatically defines the visualisation operations
that will be performed in-situ.

4) Finally the real simulation is ran using a full resolution size mesh.
The coprocessing part of the simulation reads the python script con-
taining the definition of the visualisation pipeline. This step is ex-
pected to be time-consuming.

5.2 Use Cases

Our simulations have been run on Ivanoe, an EDF corporate super-
computer, composed of 1382 nodes, each node having 12 cores for a
total of 16584 cores. In these simulations we associate one process by

Fig. 2: A final coprocessed picture of our simulation. The pipeline
where defined with a mesh of 8 layout while the simulation where run
with 128 layout.

core and we use from 720 cores up to 3600 cores. We include two use
cases that were run on this supercomputer. The choice of the cases is
motivated by two main factors: the size of the mesh and the complex-
ity of the visualization pipeline. Let us define in more detail why these
two factors:

1) Mesh size. We chose to use two meshes representing the same
geometry but at different resolutions, one made of 51M hexahedral
elements and another of 204M hexahedrals. In our industrial environ-
ment at EDF most simulation engineers use meshes composed by less
than 51M of element, then we choose this mesh size to be representa-
tive of the work performed by an average engineer in his work routine.
Furthermore, a 51M elements mesh more than doubles the size used
in the results presented in [9] for the PHASTA adaptor. On the other
side, when researcher oriented simulations are performed at EDF, they
currently contain around 200M elements. We choose then this size as
a research oriented or ‘heavy mesh’ kind of simulation.

2) Pipeline complexity. We define two pipelines aimed to be repre-
sentative of two different situations: users just performing simple and
light visualization operations (mainly some slices in a volume) and
another using very time-consuming visualization tasks (mainly per-
forming a volume rendering).

In the following we name our uses cases: CASE A, use case using
an average mesh size of 51M hexahedrals and a visualization pipeline
including volume rendering which aims to be very time-consuming.
CASE B, our second use case, contains a light visualization pipeline
simply performing some slices but on a large mesh of 204M hexahe-
drals.

Table A summarizes the composition of these use cases. In all our
use cases we run a simulation consisting in a fluid with physical prop-
erties identical to water passing through the mesh. Then the output
is generated at each step, for a total of 10 coprocessed visualization
images.

5.3 Results

Figure 2 presents an image obtained from one of our in-situ simula-
tions with CASE A. We see the flux of water moving around the verti-
cal cylinders, the glyphs being attached to the velocity vectorial field.
The color of the volume rendering represents the turbulent viscosity of
the fluid. Figure 3 shows two graphs of CASE A: in red the execution
time versus the number of cores, in blue the execution time without the
coprocessing overload. We are satisfied by this overload that is con-
tained between 20 and 30% of the total execution time. It looks like
this overload is reducing with the increase in number of cores. Fig-
ure 6 shows the exact same behavior but with CASE B. Both graphs
are difficult to distinguish as the time needed for coprocessing is
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Fig. 3: CASE A total execution time with and without the copro-
cessing.
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Fig. 4: CASE A total execution time when using coprocessing
and storage in Ensight Gold format.
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Fig. 5: CASE A total memory usage when using coprocessing
and storage in Ensight Gold format.
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Fig. 6: CASE B total execution time with and without the copro-
cessing.

1600

1800

2000

2200

2400

2600

2800

3000

1800 2400 3000 3600

E
x
ec
u
ti
on

T
im

e
(s
)

Number of processes

Coprocessing time
Storage time

Fig. 7: CASE B total execution time when using coprocessing
and storage in Ensight Gold format.
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Fig. 8: CASE B total memory usage when using coprocessing
and storage in Ensight Gold format.



USE CASES SUM UP

NAME SIZE PIPELINE FIGURES

CASE A 51M hexahedrals,
industrial size case

heavy:
volume rendering,
celldatatopointdata
and glyphs

3,4,5

CASE B 204M hexahedrals,
research size case

light:
9 slices,
celldatatopointdata

6,7,8

Table A: Description of our two use cases.

circumscribed between 6 and 10 seconds, the overload is lesser than
one percent of the total execution time.

We also decided to compare the Catalyst overhead with a non VTK
based storage strategy that performs no visualization operations. Fig-
ure 4 and 7, show the comparison of the global execution time with
Catalyst coprocessing versus the simple Ensight Gold format storage.
Figure 4 presents our implementation results with CASE A. This com-
pares positively for Catalyst as the overhead is approximately 10%
and looks decreasing when the number of cores increase. Figure 7
presents our results for CASE B. Here we can see the potential of
Catalyst when lighter and more relevant visualization tasks are pro-
cessed. Indeed, there is no more overhead as we gain an average of
10% of execution time while freeing ourselves from storage issues
(indeed, we evaluate the execution time peak of 3000 processes as a
result of concurrent accesses on our supercomputer storage disks). To
emphasize this, table B shows how much data each solution generates,
namely a basic storage in Ensight Gold format versus our coprocess-
ing implementation using Catalyst. These informations are those of
our CASE B when performing a 10 steps simulation. Both size are
expected to grow proportionally to the size of the mesh input, and the
number of steps. Therefore, we expect the gain provided by the use of
coprocessing to be increasingly interesting when moving forward in
use case size.

Finally, we also show the total memory use when running in-situ
visualization compared to writing simulation results in Ensight Gold
format in figure 5 and 8. We observe that memory consumption is
increased by an approximate factor varying from 2 to 3. This can be
explained by both our first naive memory management approach and
also by a natural increase in memory consumption when visualization
operations are to be performed. Indeed, our memory management im-
plies a consumption increased by more than 2, as we need to translate
data for Catalyst but still need the former data to pursue our simu-
lation. Finally it may also be taken into account the actual memory
consumption of the chosen visualization tasks.

*PROCESSING SIZE COMPARISON

STORAGE COPROCESSING

57Gio 1,3Mio

Table B: CASE B comparison between the size of processed results
and simple storage. The simulation was run on 10 steps, with 10 pic-
tures coprocessed.

6 CONCLUSION

We have successfully integrated Catalyst into Code Saturne (a com-
putational fluid dynamics code developed at EDF R&D). After testing
the prototype in our corporate supercomputer Ivanoe, we find Cata-
lyst to be a relevant solution to provide Code Saturne users with vi-
sualization coprocessing. Catalyst proved to allow a simple and fast
implementation of an adaptor. We use D3 (a filter originally perform-
ing a redistribution of the data among MPI processes) as a ghost cell
handler. We feel that the code responsible for the ghost cells manage-
ment in D3 could be integrated directly into ParaView/Catalyst since
applying D3 can be time consuming.

Our preliminary results are based on a 51M and a 204M elements
mesh, which is above the average size case used by EDF engineers in
our industrial environment. We plan to perform simulation on at least
400M elements meshes in the near future. We have also performed

simulation up to 300 nodes and are currently planning not using more
in this cluster. This is due to the typical simulation node size being
around 150 nodes for our engineers. We also plan to work on another
of our corporate supercomputers, an IBM BG/Q with 65k cores. In
that case, we will test on a much bigger number of cores. The increase
of memory use found in the results section indicates that memory op-
timizations are to be performed before running on the IBM BG/Q. We
did not in this study perform any delicate memory tweaking in order
to reduce the memory consumption. We are currently working on this
point, experimenting new VTK in-situ data structures that may highly
reduce this overhead.

We are mostly satisfied with the integration of Catalyst in
Code Saturne. Our first version of our integration will be most proba-
bly released in September 2013 as part of a new version of this open-
source software.
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